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In the p r e s en t  study we invest igate  the s tabi l i ty  of a boundary l aye r  for  the condition that 
the veloci ty  pe r tu rba t ions  at the p e r m e a b l e  sur face  a re  nonzero.  The stabil i ty for  the 
boundary l a y e r  of an i ncompres s ib l e  liquid in such a formula t ion  was cons idered  in [1]. 
For  the case  of subsonic veloci t ies  the effect  of compres s ib i l i t y  on the flow inside the 
boundary l a y e r  is weak, and in the p re sen t  a r t i c l e  this effect  was neglected.  The unsteady 
flow in na r row p o r e s  of a p e r m e a b l e  cover ing  depends s t rongly on the compres s ib i l i t y  of 
the gas .  The re fo re ,  in the der iva t ion  of the re la t ion  connecting the p r e s s u r e  osci l la t ions  
at the p e r m e a b l e  su r face  with the osci l la t ions  of the flow through it, the effect  of the c o m -  
p r e s s ib i l i t y  was taken into cons idera t ion .  It is shown that the boundary conditions , and 
t h e r e f o r e  a lso  the s tabi l i ty  of the boundary l a y e r  at the p e r m e a b l e  sur face ,  depend con-  
s ide rab ly  on the Maeh number ,  even fo r  a subsonic e x t e r i o r  flow. 

1. The s tabi l i ty  of a boundary l a y e r  of a c o m p r e s s i b l e  liquid at subsonic  veloci t ies  above an i m -  
p e r m e a b l e  su r face  was invest igated in [2, 3]. It was shown that the c h a r a c t e r i s t i c s  of the s tabi l i ty  ove r  
a t he rma l ly  insulated su r face  depend weakly on the Math  number .  This is explained, on the one hand, by 
the fact  that  in the absence  of heat exchange the dis t r ibut ion of the mean  velocity in the boundary l a y e r  of 
subsonic ve loci t ies  d i f fers  weakly f r o m  the veloci ty  dis t r ibut ion for  M= 0, the value of the t e m p e r a t u r e  
over  the en t i re  l a y e r  being approx imate ly  constant  and equal to the t e m p e r a t u r e  at the outer  boundary of 
the boundary l a y e r  [4], and, on the o ther  hand, by the fact  that the t e m p e r a t u r e  pe r tu rba t ions  in the bound- 
a ry  l aye r  can  be neglected [2]. 

The re fo re ,  in the absence  of heat  exchange at subsonic veloci t ies  the dis t r ibut ion of the pe r tu rba t ion  
ampli tude of the s t r e a m  function 9 =<p(y) exp [ia (x-c t ) ]  approx imate ly  sa t i s f ies  the O r r - S o m m e r f e l d  
equation 

(U -~c) (~9" -- ~2~) _ U'~ = ~ (~iv_ 2a2~', + cc~(p). (I.I) 

The usual notation is used here [2, 4]. Equation (i.I) should be solved with four boundary conditions. Ac- 
cording to [1], these  conditions a re  

(~o) = 9' ( g )  = 0, 

, ~ " , .  ( 1 . 2 )  (o) = o ,  ( u '  (o) - ~cz,,K) ~ (o) = - ~ ~ ( o )  

The f i r s t  two conditions a r e  the conditions of damping of the pe r tu rba t ions  at infinity, the third is the con- 
dition of nonpassage  along the sur face  (the pla te  is p e r m e a b l e  only in the no rma l  direct ion).  The fourth 
condition is obtained f r o m  the equations of mot ion and the law of pe rmeab i l i ty ,  

v(0)=-Kp(0). (1.3) 

Here v(0) and p(0) a re  d imens ion less  pe r tu rba t ions  of veloci ty and of p r e s s u r e  in the boundary l aye r  nea r  
the sur face  of the p e r m e a b l e  plate;  K is a coefficient  of propor t ional i ty ,  de te rmined  below. The p r e s s u r e  
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iS r e fe r red  to the total head at the boundary of the boundary l ayer  PUe 2, and the velocity is r e fe r red  to the 
velocity at the boundary of the boundary l ayer  U e. To determine K we cons ider  the model proposed in [1]. 
The pores  of the permeable  plate have a cyl indrical  shape and are oriented in the normal  direct ion to the 
plate surface.  Thus, we consider  a per fora ted  plate with small  d iameters  of the holes and distances be-  
tween them, at least  in compar ison  with the thickness of the boundary layer .  The dimensions of the holes 
(pores) are large enough so that we can take the p r e s s u r e  distribution in them to be independent of the 
radial direction. On the basis  of this model, an express ion  for  K was obtained in [1] for  an incompressible  
liquid. 

For  the case of a compress ib le  gas, in o rder  to determine K we should use the theory of propagation 
of acoustic waves in long narrow channels.  The propagat ion of acoustic waves is charac te r ized  by a prop-  
agation constant ), and charac te r i s t i c  impedance Z 0. By analogy with the e lec t r ica l ly  conducting line in 
[5] we obtain values of ~ and Z 0, expressed  in t e r m s  of acoustic p a r a m e t e r s :  Z, the impedance of an ele-  
ment of pipe, and Y, a coefficient charac te r iz ing  the marg in  of energy of compress ion  and loss of thermal  
energy of a tube element  due to heat t r ans fe r  to the walls of the pipe. The acoustic pa r ame te r s  c h a r a c t e r -  
ize the relat ion between the bulk velocity and p r e s s u r e .  In the presen t  study it is convenient to consider  
the relat ion between the velocity V 1 and the p r e s s u r e  averaged over the pipe c ros s  section. For  a law of 
propagation of velocity and p r e s s u r e  averaged over  the c ros s  section along a long pipe we evidently can 
use an analogy with an e lec t r ica l ly  conducting line having impedance SZ and a second p a r a m e t e r  Y/S, 
where S is the c ros s - sec t iona l  a rea  of the pipe. Using Z and Y, taken f rom [6], we can write the dimen- 
sionless quantities Z 1 = Z- s 6 / p u  e and Y1 =Y" PUe6/S as 

Z 1 = it2c 1~ ( ] / ' ~  ri) 
I, ( V / ~  n) ' (1.4) 

Yi  = -- icecMo u [• + (x --  l) I 2 ( ~ ' i ~ e ~  ] 
io ( r ~  rl) J" 

As dimensional quantities we use the quantities ea r l i e r  assumed in the present  study. It was taken into 
account that the frequency r where 6 is the thickness of the boundary layer .  In (1.4) we assume 
the following notation: M 0 is the ratio of the flow velocity at the external  boundary of the boundary l ayer  
to the acoustic velocity near  the surface,  a is the Prandt l  number,  ~ is the adiabatic exponent, r 1 is the 
rat io of the radius of a hole (pore) to the thickness of the boundary layer ,  and I 0 and 12 are Bessel  functions 
of order  zero  and o rde r  two. We should note that in the present  study we consider  cases  in which the tem-  
pera ture  distr ibution over the layer  is approximately constant; therefore,  by M 0 we shall mean the Mach 
number of the incoming flow. By analogy with [5] the propagation constant )t and the charac te r i s t i c  im-  
pedance Z 0 are defined by the equations 

~.:(ZIY~)I/% Zo=Zi/;~. 

On one end of the pipe (pore) let us be given the relat ion 

p(--H)-----X,, vl(--H ). (1.5) 

Then by analogy with the resul ts  presented in [7] we can obtain 

v 1(0) __ i Z o - - X 1 t h ( ~ - H )  

p ( 0 )  Z 0 Z o t h ( x H ) ~ X ,  " 

If the fract ion of the surface occupied by the holes is n, then the velocity near  the surface v(0) =nvl(0); 
therefore ,  

K = v (0) n Z o - -  X i  th  (~.H) (1.6) 
p ( -~  = Z 0 Z 0 th  ( ) ,H)  - -  X 1 " 

The value of X 1 is determined simply if condition (1.5) is wri t ten for the end of the pipe (pore) adja- 
cent to a large volume in which the gas has no average motion (e.g., a chamber  of weak suction). Using 
the equation vl(--H) =v ( -H) /n (n  is the porosi ty,  H is the thickness of the permeable  covering, and v(--H) 
are the velocity per turbat ions near  the permeable  covering), according to [4], we can obtain 

Xi=X/n----(iotc--ot2/Be) (a + ?) 'a'Fn, 

.f= -- V - - i a c R e + a  ~. 

2. In cer ta in  par t i cu la r  cases  we can qualitatively explain the effect of permeabi l i ty  of perturbat ions 
through the surface on the stability of the boundary layer .  
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a) If the liquid is i ncompres s ib l e  fM 0 = 0), then we should cons ider  the l imi t ing  value of K as IX HI ~ 0. 
In this  case  

h'----Q(lq-XQ) -~, (2.1) 

where  Q = - n / Z 1 H .  Equation (2.1) ag r ee s  with the equation obtained e a r l i e r  in [4] We see that  K depends 
only on two p a r a m e t e r s  of the p e r m e a b l e  p la te :  n /H  and r~. If the d i ame te r s  of the holes a re  so smal l  
that  I ~ l  << 1, then we can eas i ly  show that K=nr~Re/8H,  i.e.,  K depends on the single p a r a m e t e r  
nr}/H. 

b) For  a c o m p r e s s i b l e  liquid (M0~0), the value of IXHI can  a s sume  la rge  values for  modera te  Mach 
numbers  but suff iciently l a rge  p o r e s  (holes). For  [XHI>> l th(XH)=1,  the re fore ,  K = n / Z  0 or  

tC=n~/Z1. (2.2) 

The e x p r e s s i o n  obtained is independent of the th ickness  of the p e r m e a b l e  covering.  This  indicates  that 
with inc reas ing  IXHI the s tabi l i ty  c h a r a c t e r i s t i c s  will approach ce r t a in  finite l imi ts .  We see that these 
l imi t s  will depend on the p a r a m e t e r s  of the p e r m e a b l e  cover ing  r~ and n, and on the numbers  M0, cr, and 
n .  If I t ~ c ~ l l  << 1, then we can show that K depends only on the p a r a m e t e r  nM0rt 2. 

F r o m  condition (1.3) it follows that  the energy  flux through the p e r m e a b l e  sur face  

N ~- p (0) :, (o) -~ p (0) v (0) 
4 = iP (0)] ~ l~e (K). 

we  can show that  fo r  smal l  d i a m e t e r s  of the po res  both for  an incompress ib Ie  liquid (I XHI = 0) and 
a lso  fo r  a c o m p r e s s i b l e  liquid fo r  IXHI >>1, the rea l  pa r t  of K is posi t ive;  the re fo re  N> 0. Thus, the en-  
e rgy  d e c r e a s e s  in the boundary l a y e r  and by analogy with the definition of [8] for  e las t ic  cover ings  the 
p e r m e a b l e  cover ing  Can be a s sumed  pas s ive .  In [8] it was indicated that in the major i ty  of c a s e s  the s t a -  
bili ty of the boundary l a y e r  fo r  pas s ive  cover ings  is reduced in compar i son  with the s tabi l i ty  fo r  a rigid 
i m p e r m e a b l e  su r f ace .  The re fo re ,  we should expect  a reduction in stabil i ty of the boundary l aye r s  above 
p e r m e a b l e  su r f ace s  both fo r  condition (2.1) (this is found to be in ag reemen t  with the resu l t s  of [1], ob- 
tained for  an i~Lcompressible liquid) and a lso  for  condition (2.2). 

In other  ca ses ,  when it is n e c e s s a r y  to use (1.6) to de te rmine  K, a s imple  analys is  is imposs ib le ,  
and it is difficult to draw any conclusions without detailed calculat ion.  There fo re ,  in the p r e sen t  study, 
bes ides  an approx imate  ana lys i s  we c a r r y  out some calcula t ions  using (1.6). 
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3. The charac te r i s t i c s  of stability are calculated for  a velocity profile, given in the form of a sixth- 
degree polynomial 

U= 2y--5g4 @6yS--2y 6, 

which is a good approximation of the distribution of the longitudinal velocity in the boundary layer  for  a 
plane impermeable  plate.  If the d iameters  of the holes of a permeable  plate are small,  and suction is ab- 
sent, the effect of the holes on the velocity distribution will be weak. Therefore ,  in the present  study such 
an approximation of the velocity profile is assumed to be suitable in calculations of stability of the bound- 
ary  layer  for  a plane permeable  surface without suction. 

The resul ts  given below are obtained on the basis  of a numerical  solution of Eq. (1.1) with boundary 
conditions (1.2), in which K is determined by Eq. (1.6). All the calculations are ca r r i ed  out for  fixed values 
of a=0.72,  ~ =  1.4, andn=0 .5 .  

The calculation resul ts  a re  presented on the graphs,  where Re~ and ~1 are the Reynolds number 
and the wave number  plotted over  the thickness of the displacement.  

In Fig. 1 we show the dependence of the cr i t ical  Reynolds numbers  Rel* on r~ for  three values of 
H (M0=0.1). Additional calculations for M0=0 show that for  the pa r ame te r s  r~ and H, indicated in Fig. 1, 
the stability charac te r i s t i c s  for  ]VI0=0.1 and M0=0 differ weakly f rom each other.  This is explained by the 
fact that for M0=0.1 I~HI << 1 and for  determination of K we can use Eq. (2.1). For  l a r g e r  values of M 0 
the effect of the Mach number  on the stability charac te r i s t i c s  becomes noticeable (Figs. 2 and 3). F rom 
Fig. 2 we see that Re1* for  M0=0.5 is less  than Ret* obtained for M0=0.1, i.e., with increasing M 0 the 
stability is reduced. 

For  M0=0.5 with H~ 2 and r~< 10 -3, the thickness of the permeable  plate has no effect on the value 
of Rel*, which is found to be in agreement  with the conclusions of the preceding section [see (2.2)]. In a 
cer ta in  region of values of r~ depending on M 0 and H {e.g., for  M0=0.5, H=5 r ~  1 0 - 2 - 3  . 10-2), we observe 
anonmonotonici ty (although weak) in the dependence of Rel* on r~, i.e., an increase  in the diameter  of the 
holes does not always lead to a reduction in the stability of the boundary layer .  Undoubtedly, the region 
of values in which we observe a violation of the monotonicity of the variat ion of Re1* for  variat ion of r~ 
depends on other pa r ame te r s  (a, ~,  and n), which in the present  ar t icle  do not vary, and also on the form 
of the velocity profi le.  

A compar ison  of the curves  of neutral  stability (Fig. 3) for  M0=0.1 and M0=0.5 indicates, on the one 
hand, the deformation of the curve in the region of Re1* with variat ion of M 0, and, on the other hand, it in- 
dicates the coincidence of the branches of these curves .  The la t ter  is connected with the fact that on the 
branches of the curve of neutral  stability I~HI< 1 and K is determined f rom (2.1), where ?~he value of M 0 
does not  appear. 

Figure 4 shows the variat ion in the shape of the curve of neutral stability (M0=0.5, H=5) as a func- 
tion of r~. We see the formation of two ext remal  values of Re 1 on a single curve,  the minimum of which 
is Re1*. The existence of two extremal  values of Re I is explained by the kink on the curve of Fig. 2 (M0= 
O.5, H=5). 
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