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AT SUBSONIC VELOCITIES
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In the present study we investigate the stability of a boundary layer for the condition that
the velocity perturbations at the permeable surface are nonzero. The stability for the
boundary layer of an incompressible liquid in such a formulation was considered in [1].
For the case of subsonic velocities the effect of compressibility on the flow inside the
boundary layer is weak, and in the present article this effect was neglected. The unsteady
flow in narrow pores of a permeable covering depends strongly on the compressibility of
the gas. . Therefore, in the derivation of the relation connecting the pressure oscillations
at the permeable surface with the oscillations of the flow through it, the effect of the com~
pressibility was taken into consideration. It is shown that the boundary conditions, and
therefore also the stability of the boundary layer at the permeable surface, depend con-
siderably on the Mach number, even for a subsonic exterior flow.

1. The stability of a boundary layer of a compressible liquid at subsonic velocities above an im-~
permeable surface was investigated in [2, 3]. It was shown that the characteristics of the stability over
a thermally insulated surface depend weakly on the Mach number. This is explained, on the one hand, by
the fact that in the absence of heat exchange the distribution of the mean velocity in the boundary layer of
subsonic velocities differs weakly from the velocity distribution for M=0, the value of the temperature
over the entire layer being approximately constant and equal to the temperature 4t the outer boundary of
the boundary layer [4], and, on the other hand, by the fact that the temperature perturbations in the bound-
ary layer can be neglected [2].

Therefore, in the absence of heat exchange at subsonic velocities the distribution of the perturbation
amplitude of the stream function ¥ =¢ (y) exp [ix (x—ct)] approximately satisfies the Orr—Sommerfeld
equation

(U =) (¢ —og) = U'p = 1}

o Re

(™Y — 2a%¢" + a'p). : 1.1)

The usual notation is used here [2, 4]. Equation (1.1) should be solved with four boundary conditions, Ac-
cording to [1], these conditions are
¢ (o0) = @' (20) = 0,

¢ (0)=0, (' (0) —ia/K)¢ (0) = — (1.2)

1 ) "
¢ (0).

iz Re ¥
The first two conditions are the conditions of damping of the perturbations at infinity, the third is the con-

dition of nonpassage along the surface (the plate is permeable only in the normal direction). The fourth
condition is obtained from the equations of motion and the law of permeability,

v(0)=—Kp(0). (1.3)

Here v(0) and p(0) are dimensionless perturbations of velocity and of pressure in the boundary layer near
the surface of the permeable plate; K is a coefficient of proportionality, determined below. The pressure
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is referred to the total head at the boundary of the boundary layer pUeZ, and the velocity is referred to the
velocity at the boundary of the boundary layer U,. To determine K we consider the model proposed in [1].
The pores of the permeable plate have a cylindrical shape and are oriented in the normal direction to the
plate surface. Thus, we consider a perforated plate with small diameters of the holes and distances be-
tween them, at least in comparison with the thickness of the boundary layer. The dimensions of the holes
(pores) are large enough so that we can take the pressure distribution in them to be independent of the
radial direction. On the basis of this model, an expression for K was obtained in [1] for an incompressible
liquid.

For the case of a compressible gas, in order to determine K we should use the theory of propagation
of acoustic waves in long narrow channels. The propagation of acoustic waves is characterized by a prop-
agation constant A and characteristic impedance Z;,. By analogy with the electrically conducting line in
5] we obtain values of A and Z,, expressed in terms of acoustic parameters: Z, the impedance of an ele-
ment of pipe, and Y, a coefficient characterizing the margin of energy of compression and loss of thermal
energy of a tube element due to heat transfer to the walls of the pipe. The acoustic parameters character-
ize the relation between the bulk velocity and pressure. In the present study it is convenient to consider
the relation between the velocity V, and the pressure averaged over the pipe cross section. For a law of
propagation of velocity and pressure averaged over the cross section along a long pipe we evidently can
use an analogy with an electrically conducting line having impedance SZ and a second parameter Y/S,
where S is the cross-sectional area of the pipe. Using Z and Y, taken from [6], we can write the dimen~
sionless quantities Z,=Z-S6/pU, and Y,=Y - pU,0/S as
c 1, (V—m 7'1)

Z, = ia —_—
1 I, (V ioc Re o

(1.4)

o oar 2 I;(ViacReor)

Y, = — iac My [’V +(x—1) W}
As dimensional quantities we use the quantities earlier assumed in the present study. It was taken into
account that the frequency w=—acUe/ 8, where 6 is the thickness of the boundary layer. In (1.4) we assume
the following notation: M, is the ratio of the flow velocity at the external boundary of the boundary layer
to the acoustic veloeity near the surface, ¢ is the Prandtl number, % is the adiabatic exponent, r{ is the
ratio of the radius of a hole (pore) to the thickness of the boundary layer, and I, and I, are Bessel functions
of order zero and order two, We should note that in the present study we consider cases in which the tem-
perature distribution over the layer is approximately constant; therefore, by M; we shall mean the Mach
number of the incoming flow. By analogy with [5] the propagation constant A and the characteristic im-~
pedance Z; are defined by the equations

A=(Z,Y )2, Zy=Z,/h.
On one end of the pipe (pore) let us be given the relation
p(—H)=X, vy(—H). (1.5)

Then by analogy with the results presented in [7] we can obtain
9 (0) 1 Z,— X,th(LH)

?(0) Zy Zoth(AH)— X; °
If the fraction of the surface occupied by the holes is n, then the velocity near the surface v(0)=nv,(0);
therefore,

K= — v@ _ n Z,— X, th(AH) (1.6)
=TT0 " Z, Z,u =X,

The value of X, is determined simply if condition (1.5) is written for the end of the pipe (pore) adja-
cent to a large volume in which the gas has no average motion (e.g., a chamber of weak suction). Using
the equation v, H) =v(—H)/n (nisthe porosity, H is the thickness of the permeable covering, and v(—H)
are the velocity perturbations near the permeable covering), according to [4], we can obtain

X,=X/n=(iac—a?Re) (a-+y)'ayn,
y="—) —iacRe-}-o2.
2, In certain particular cases we can qualitatively explain the effect of permeability of perturbations
through the surface on the stability of the boundary layer.
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a) If the liquid is incompressible (M,=0), then we should consider the limiting value of K as {A H/—0.
In this case

E=—Q(1+XQ)", 2.1)

where Q=—n/ZH. Equation (2.1) agrees with the equation obtained earlier in [4]. We see that K depends
only on two parameters of the permeable plate: n/H and rf, If the diameters of the holes are so small
that [ViacRer;| < 1, then we can easily show that K=nr{Re/8H, i.e., K depends on the single parameter

2
nry /H.

b) For a compressible liquid (M, #0), the value of ]\ H| can assume large values for moderate Mach
numbers but sufficiently large pores (holes). For |AH[> 1th(AH)=1, therefore, K=n/Z, or
R=nMZ,. - 2.2)

The expression obtained is independent of the thickness of the permeable covering. This indicates that
with increasing |AH| the stability characteristics will approach certain finite limits. We see that these
limits will depend on the parameters of the permeable covering r} and n, and on the numbers M,, 0, and
w. If |[ViacRer,| << 1, then we can show that K depends only on the parameter nM,r,,

From condition (1.3) it follows that the energy flux through the permeable surface

N=2QeOEpO00 _ ) Re (K).

We can show that for small diameters of the pores both for an incompressible liquid (JAH]| =0} and
also for a compressible liquid for |AH|>1, the real part of K is positive; therefore N> 0. Thus, the en~
ergy decreases in the boundary layer and by analogy with the definition of [8] for elastic coverings the
permeable covering can be assumed passive. In [8] it was indicated that in the majority of cases the sta~
bility of the boundary layer for passive coverings is reduced in comparison with the stability for a rigid
impermeable surface. Therefore, we should expect a reduction in stability of the boundary layers above
permeable surfaces both for condition (2.1) ¢this is found to be in agreement with the results of [1], ob-
tained for an incompressible liquid) and also for condition (2.2).

In other cases, when it is necessary to use (1.6) to determine K, a simple analysis is impossible,
and it is difficult to draw any conclusions without detailed calculation. Therefore, in the present study,
besides an approximate analysis we carry out some calculations using (1.6).
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3. The characteristics of stability are calculated for a velocity profile, given in the form of a sixth-
degree polynomial ’

U:2y—5y4+6y5——2y6,

which is a good approximation of the distribution of the longitudinal velocity in the boundary layer for a
plane impermeable plate. If the diameters of the holes of a permeable plate are small, and suction is ab-
sent, the effect of the holes on the velocity distribution will be weak., Therefore, in the present study such
an approximation of the velocity profile is assumed to be suitable in calculations of stability of the bound-
ary layer for a plane permeable surface without suction.

The results given below are obtained on the basis of a numerical solution of Eq. (1.1) with boundary
conditions (1.2), in which K is determined by Eq. (1.6). All the calculations are carried out for fixed values
of 0=0,72, n=1.4,andn=0.5.

The calculation results are presented on the graphs, where Re; and ¢, are the Reynolds number
and the wave number plotted over the thickness of the displacement.

In Fig. 1 we show the dependence of the critical Reynolds numbers Re* on r? for three values of
H (M;=0.1). Additional calculations for M,=0 show that for the parameters r% and H, indicated in Fig. 1,
the stability characteristics for My=0.1 and M;=0 differ weakly from each other. This is explained by the
fact that for My=0.1 |AH|< 1 and for determination of K we can use Eq. (2.1). For larger values of M,
the effect of the Mach number on the stability characteristics becomes noticeable (Figs. 2 and 3). From
Fig. 2 we see that Re * for M;=0.5 is less than Re* obtained for M;=0.1, i.e., with increasing M, the
stability is reduced.

For M,=0.5 with HS 2 and r}< 1073, the thickness of the permeable plate has no effect on the value
of Re¢*, which is found to be in agreement with the conclusions of the preceding section [see (2.2)]. Ina
certain region of values of r} depending on M, and H (e.g., for My=0.5, H=5 r{~ 1072-3-107%), we observe
a nonmonotonicity (although weak) in the dependence of Re* on r%, i.e., an increase in the diameter of the
holes does not always lead to a reduction in the stability of the boundary layer. Undoubtedly, the region
of values in which we observe a violation of the monotonicity of the variation of Re* for variation of r}
depends on other parameters (0, %, and n), which in the present article do not vary, and also on the form
of the velocity profile,

A comparison of the curves of neutral stability (Fig. 3) for My=0.1 and M,=0.5 indicates, on the one
hand, the deformation of the curve in the region of Re* with variation of My, and, on the other hand, it in-
dicates the coincidence of the branches of these curves. The latter is connected with the fact that on the
branches of the curve of neutral stability |AH|< 1 and K is determined from (2.1), where the value of M,
does not appear.

Figure 4 shows the variation in the shape of the curve of neutral stability (M,=0.5, H=5) as a func-
tion of r}. We see the formation of two extremal values of Re; on a single curve, the minimum of which
is Re*. The existence of two extremal values of Re; is explained by the kink on the curve of Fig. 2 (My=
0,5, H=5).
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